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Motivation



Riemann zeta function

ζ(s) = 1+ 1
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=
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1− 2−s ·
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• One of the most famous examples of a global zeta function
• Together with the functional equation

ξ(s) := π−s/2Γ(s/2)ζ(s) = ξ(1− s)

encodes a lot of the arithmetic information of Z.
e.g.: Zeros of ζ(s)⇝ precise prime distribution

• ζ(s) still keeps secret many of its properties
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Hasse–Weil zeta functions

Hasse and Weil generalized an analog of ζ(s) for algebraic varieties

ζX(s) :=
∏
p

ζXp(p−s)

If Xp := X mod p is smooth, then

ζXp(t) := exp

∑
i≥0

#Xp(Fpi)
ti
i

 ∈ Q(t)

Example: X = {•}, a point, then ζ{•}(s) = ζ(s)

• What arithmetic properties of X can we read from ζXp(s)?
• ζXp(t) obeys a functional equation and satisfies the Riemann
hypothesis!

• What about ζX(s)?
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Elliptic curves

E an elliptic curve over Q
ζE(s) :=

∏
p

ζEp(p−s) and ζEp(t) =
Lp(t)

(1− t)(1− pt)

Lp(t) =


1− apt+ pt2, good reduction,ap = p+ 1−#Ep(Fp)
1± t, non-split/split multiplicative reduction;
1 additive reduction;

ζE(s) =
∏
p

Lp(p−s)
(1− p−s)(1− p−s+1) =

ζ(s)ζ(s− 1)
LE(s)

• ap ⇝ arithmetic information about Ep ⇝ E.
• Modularity theorem =⇒ LE satisfies a functional equation
• Birch–Swinnerton-Dyer conjecture predicts ords=1 LE(s) = rk(E).
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ζ(s) vs ζX(s)

We always expect ζX(s) to satisfy a functional equation.

• zero-dimensional varieties (number fields) ✓
• elliptic curves over Q ✓
• genus 2 curves ?

numerically ✓
• surfaces ?

Major difference

• easy to explicitly write down ζ(s)
• extremely difficult to calculate ζXp(t) for an arbitrary X

Problem
Given an explicit description of X, compute

ζXp(t) := exp

∑
i≥0

#Xp(Fpi)
ti
i

 ∈ Q(t)

5 / 31 Edgar Costa (Dartmouth College) Computing zeta functions of nondegenerate hypersurfaces in toric varieties



ζ(s) vs ζX(s)

We always expect ζX(s) to satisfy a functional equation.

• zero-dimensional varieties (number fields) ✓
• elliptic curves over Q ✓
• genus 2 curves ? numerically ✓

• surfaces ?

Major difference

• easy to explicitly write down ζ(s)
• extremely difficult to calculate ζXp(t) for an arbitrary X

Problem
Given an explicit description of X, compute

ζXp(t) := exp

∑
i≥0

#Xp(Fpi)
ti
i

 ∈ Q(t)

5 / 31 Edgar Costa (Dartmouth College) Computing zeta functions of nondegenerate hypersurfaces in toric varieties



ζ(s) vs ζX(s)

We always expect ζX(s) to satisfy a functional equation.

• zero-dimensional varieties (number fields) ✓
• elliptic curves over Q ✓
• genus 2 curves ? numerically ✓
• surfaces ?

Major difference

• easy to explicitly write down ζ(s)
• extremely difficult to calculate ζXp(t) for an arbitrary X

Problem
Given an explicit description of X, compute

ζXp(t) := exp

∑
i≥0

#Xp(Fpi)
ti
i

 ∈ Q(t)

5 / 31 Edgar Costa (Dartmouth College) Computing zeta functions of nondegenerate hypersurfaces in toric varieties



ζ(s) vs ζX(s)

We always expect ζX(s) to satisfy a functional equation.

• zero-dimensional varieties (number fields) ✓
• elliptic curves over Q ✓
• genus 2 curves ? numerically ✓
• surfaces ?

Major difference

• easy to explicitly write down ζ(s)
• extremely difficult to calculate ζXp(t) for an arbitrary X

Problem
Given an explicit description of X, compute

ζXp(t) := exp

∑
i≥0

#Xp(Fpi)
ti
i

 ∈ Q(t)

5 / 31 Edgar Costa (Dartmouth College) Computing zeta functions of nondegenerate hypersurfaces in toric varieties



ζ(s) vs ζX(s)

We always expect ζX(s) to satisfy a functional equation.

• zero-dimensional varieties (number fields) ✓
• elliptic curves over Q ✓
• genus 2 curves ? numerically ✓
• surfaces ?

Major difference

• easy to explicitly write down ζ(s)
• extremely difficult to calculate ζXp(t) for an arbitrary X

Problem
Given an explicit description of X, compute

ζXp(t) := exp

∑
i≥0

#Xp(Fpi)
ti
i

 ∈ Q(t)

5 / 31 Edgar Costa (Dartmouth College) Computing zeta functions of nondegenerate hypersurfaces in toric varieties



The zeta function problem

Let X be a smooth variety over a finite field Fq of characteristic p,
consider

ζX(t) := exp

∑
i≥1

#X(Fqi)
ti
i


Problem
Compute ζX from an explicit description of X.

Theoretically this is “trivial”.
The degree of ζX is bounded by the geometry of X, and we can then
enumerate X(Fqi) for enough i to pinpoint ζX.

This approach is only practical for very few classes of varieties, e.g.,
low genus curves and p small.
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“Real life” applications

• Cryptography/Coding Theory, often interested in #X(Fq)

• Testing Isomorphism/Isogeny
• Computing End(A) for A an abelian variety.
⇝ A couple of ζAp(t) usually give away the shape of End(A).

• Computing Picard number of a K3 surface
⇝ sufficient criterion for infinitely many rational curves on a K3

• Testing the speciality of a cubic fourfold
• Computing L-functions and their special values, e.g.:

• Birch–Swinnerton-Dyer conjecture⇝ rk(A)
• searching for Langlands correspondences

• Arithmetic statistics
• Sato–Tate
• Lang–Trotter
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Common Approaches

• Very generic algorithms derived from Dwork’s p-adic analytic
proof that ζX(t) ∈ Q(t)

• ℓ-adic: by computing the action of Frobenius on mod-ℓ étale
cohomology for many ℓ.

• We need to have an effective description of the cohomology.
• E.g.: for abelian varieties we have Schoof-Pila’s method
However, only practical if g ≤ 2 or some extra structure is
available.

• p-adic: based on Monsky–Washnitzer cohomology

Today
New p-adic method to compute ζX(t) that achieves a striking
balance between practicality and generality.
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Outline

Toric hypersurfaces

p-adic Cohomology

Some examples
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Toric hypersurfaces



Toy example, the Projective space

• There are many ways to define the Pn

• For example, let

Pd := homogeneous polynomials in n+ 1 variables of degree d

and consider the graded ring

P :=
⊕
d≥0

Pd.

Then we have Pn := ProjP

• We can think of Pd := R[d∆ ∩ Zn],
where ∆ is the standard simplex.

• Idea: generalize ∆ to be any
polytope.
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Toric hypersurfaces

• f =
∑
α∈Zn

cαxα ∈ R[x±1 , . . . , x±n ] a Laurent polynomial

• f defines an hypersurface in the torus Tn := Spec(R[x±1 , . . . , x
±
n ])

• ∆ := Newton polytope of f = convex hull of the support of f in Rn

• To ∆ we can associate a graded ring and a projective variety.

P∆ :=
⊕
d≥0

Pd, Pd := R[xα : α ∈ d∆ ∩ Zn]

P∆ := ProjP∆
Xf := ProjP∆/(f) ⊂ P∆

Xf is an hypersurface in the toric variety P∆

Examples

∆ X∆
Conv(0, e1, . . . , en) Pn

Conv(0, e1, ℓe2, . . . , ℓen) Pn(ℓ, 1, . . . , 1)
Conv(0, e1, e2, e1 + e2) = [0, 1]2 P1 × P1
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Toric hypersurfaces are everywhere

Vertices of ∆ Resulting hypersurface

0,de1,de2 Smooth plane curve of genus
(
d− 1
2

)
0, (2g+ 1)e1, 2e2 Odd hyperelliptic curve of genus g

0,ae1,be2 Ca,b-curve
0, 4e1, 4e2, 4e3 Quartic K3 surface
0, 2e1, 6e2, 6e3 Degree 2 K3 surface

(All the examples above are hypersurfaces in a weighted projective
spaces.)

K3 surfaces can arise as hypersurfaces:
• in P3, as a quartic surface;
• in 95 weighed projective spaces;
• in 4319 toric varieties.
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Keeping our eyes on the prize

Given
f =

∑
α∈Zn

cαxα ∈ Fq[x±1 , . . . , x±n ]

efficiently compute

ζX(t) := exp

∑
i≥1

#X(Fqi)
ti
i


=

∏
i

det
(
1− tFrob |Hiet(XFq ,Qℓ)

)(−1)i+1∈ Q(t),

where X := ProjP∆/(f) ⊂ P∆

But under what assumptions on X? Is smoothness enough?

We will need a bit more, we will nondegeneracy.
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Nondegenerate toric hypersurfaces

Geometric definition
An hypersurface is nondegenerate if the cross-section by any
bounding hyperplane (in any dimension) are all smooth in their
respective tori.

Equivalently, if for every face σ ⊆ ∆, f restricted to the torus
associated to σ is nonsingular of codimension 1.

Example
Let C be a plane curve in P2, then C is nondegenerate if:

• C does not pass through the points (1, 0, 0), (0, 1, 0), (0, 0, 1);
• C intersects the coordinate axes x = 0, y = 0, z = 0 transversally;
• C is smooth on the complement of the coordinate axes.

In terms of ideals, rad
⟨
x ∂
∂x f, y

∂
∂y f, z

∂
∂z f, f

⟩
= ⟨x, y, z⟩
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p-adic Cohomology



Goal

Setup

• f =
∑
α∈Zn

cαxα ∈ Fq[x±1 , . . . , x±n ]

• X := ProjP∆/(f) ⊂ P∆ a nondegenerate hypersurface

Goal
Compute

ζX(t) := exp

∑
i≥1

#X(Fqi)ti/i


=

∏
i

det
(
1− tFrob |Hiet(XFq ,Qℓ)

)(−1)i+1
= Q(t)(−1)

n
ζP∆

(t),

where Q(t) := det(1− tFrob |PHn−1et (XFq ,Qℓ)) ∈ 1+ Z[t]
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Master plan

Setup

• f =
∑
α∈Zn

cαxα ∈ Fq[x±1 , . . . , x±n ]

• X := ProjP∆/(f) ⊂ P∆ a nondegenerate hypersurface
• σ := p-th power Frobenius map

Goal
Compute the matrix representing the action of σ in PHn−1rig (X) with
enough of p-adic precision to deduce

Q(t) = det(1− q−1tFrob |PHn−1rig
(
X
)
) ∈ 1+ Z[t].

Instead, of working with rigid cohomology, we will work with the
Monsky–Washnitzer cohomology PH†,n−1(X) (⊂ PH†,n−1(T\X)).

16 / 31 Edgar Costa (Dartmouth College) Computing zeta functions of nondegenerate hypersurfaces in toric varieties



Master plan

Setup

• f =
∑
α∈Zn

cαxα ∈ Fq[x±1 , . . . , x±n ]

• X := ProjP∆/(f) ⊂ P∆ a nondegenerate hypersurface
• σ := p-th power Frobenius map

Goal
Compute the matrix representing the action of σ in PHn−1rig (X) with
enough of p-adic precision to deduce

Q(t) = det(1− q−1tFrob |PHn−1rig
(
X
)
) ∈ 1+ Z[t].

Instead, of working with rigid cohomology, we will work with the
Monsky–Washnitzer cohomology PH†,n−1(X)

(⊂ PH†,n−1(T\X)).

16 / 31 Edgar Costa (Dartmouth College) Computing zeta functions of nondegenerate hypersurfaces in toric varieties



Master plan

Setup

• f =
∑
α∈Zn

cαxα ∈ Fq[x±1 , . . . , x±n ]

• X := ProjP∆/(f) ⊂ P∆ a nondegenerate hypersurface
• σ := p-th power Frobenius map

Goal
Compute the matrix representing the action of σ in PHn−1rig (X) with
enough of p-adic precision to deduce

Q(t) = det(1− q−1tFrob |PHn−1rig
(
X
)
) ∈ 1+ Z[t].

Instead, of working with rigid cohomology, we will work with the
Monsky–Washnitzer cohomology PH†,n−1(X) (⊂ PH†,n−1(T\X)).

16 / 31 Edgar Costa (Dartmouth College) Computing zeta functions of nondegenerate hypersurfaces in toric varieties



Overall picture

Goal
Compute the matrix representing the action of σ in PH†,n−1(X) with
enough p-adic precision.

PHn−1dR (XQq)
∼
id

// PH†,n−1(X)

σ

		

explicit description over C
[Dwork–Griffiths, Batyrev–Cox]

��

�
�
�

de Rham cohomology
with overconvergent power series

��

�
�
�

cohomology relations
+

commutative algebra
=⇒

basis for PHn−1dR (XQq) =
{
xβω/f i

}
β

+
reduction algorithm
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Generic algorithm – Abbott–Kedlaya–Roe type

PHn−1dR (XQq)
∼
id

// PH†,n−1(X)

σ

		

1. Compute
{
xβ
fmω

}
β

a monomial basis for PHn−1dR (XQq)

where ω := dx1
x1 ∧ · · · ∧ dxn

xn

2. In PH†,n compute a series approximation for

σ

(
xβ
fmω

)
= pn x

pβ

f pmω
∑
i≥0

(
−m
i

)(
σ(f)− f p

f p

)i

3. Write the approximation in terms of basis elements, i.e., apply
the de Rham relations

Note: Originally for smooth hypersurfaces in the projective space.
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A sparse representation of Frobenius

Unfortunately, the truncation of the series expansion to K terms

σ

(
xβ
fmω

)
≈ pn x

pβω

f pm
K−1∑
i=0

(
−m
i

)(
σ(f)− f p

f p

)i

involves dense polynomials of degree p(K− 1) in n variables, and
thus an unavoidable factor of pn in the runtime.

But there is another way...

By expanding
(
σ(f)− fp

fp

)i
with the binomial theorem, swapping the

summation order, we are able to rewrite in a sparse way.

K−1∑
i=0

(
−m
i

)(
σ(f)− f p

f p

)i
= · · · =

K−1∑
i=0

(
−m
i

)(
m+ K− 1
K− i− 1

)
σ(f)if−p(m+i)
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Schematically

Abbott–Kedlaya–Roe vs C.–Harvey–Kedlaya∑K−1
i=0

(−m
i
) (σ(f)−f p

f p

)i ∑K−1
i=0

(−m
i
)(m+K−1

K−i−1
)
σ(f)if−p(m+i)

(pdK)n+O(1) terms

(dK)n+O(1) terms

ρ : Pℓ+1 7−→ Pℓ
g ω

f ℓ+1 ≡ ρ(g) ωf ℓ

π : Pn 7−→ Pn
xα+βg ω

f ℓ+1 ≡ xβπ(g) ωf ℓ ,

“slice” 7→ “slice” “dot” 7→ “dot”
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Schematically
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Generic algorithm – C.–Harvey–Kedlaya

PHn−1dR (XQq)
∼
id

// PH†,n−1(X)

σ

		

1. Compute
{
xβ
fmω

}
β

a monomial basis for PHndR(XQq)

2. In PH†,n compute a sparse approximation for

σ

(
xβ
fmω

)
≈ pn x

pβ

f pm
N−1∑
i=0

(
−m
i

)(
m+ N− 1
N− i− 1

)
σ(f)if−p(m+i)

3. Apply sparse reduction algorithm to reduce expansion to basis
elements.

• Involves multiplying together O(p) matrices of size
#(n∆ ∩ L) ∼ nn vol∆

• In a more convoluted process, we can reduce the matrix size to
n! vol∆, saving a factor of en ≈ nn/n! (e.g. 220⇝ 64)

For large p, all the work is in step 3
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Some Remarks

• Complexity
First version of our new algorithm has complexity roughly

p1+o(1) vol(∆)O(n)

and space complexity is only

log p vol(∆)O(n).

This allows us to handle examples with much larger p than any
found in the literature.

• Implementation
• Projective hypersurfaces (∼2014): C++ with NTL and Flint
Soon available in Sage

• Toric hypersurfaces: beta version in C++ with NTL
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Some examples



Example: K3 surface in the Dwork pencil

Consider the projective quartic surface X in P3Fp given by

x4 + y4 + z4 + w4 + λxyzw = 0.

For λ = 1 and p = 220 − 3, using the old projective code in 22h7m we
compute that

ζX(t)−1 = (1− t)(1− pt)16(1+ pt)3(1− p2t)Q(t),

where the “interesting” factor is

Q(t) = (1+ pt)(1− 1688538t+ p2t2).

The polynomials R1 and R2 arise from the action of Frobenius on the
Picard lattice; by a p-adic formula of de la Ossa–Kadir.
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Example: a quartic surface in the Dwork pencil

Consider the projective quartic surface X in P3Fp given by

x4 + y4 + z4 + w4 + λxyzw = 0.

For λ = 1 and p = 220 − 3, using the toric old projective code in
1m33s 22h7m we compute

ζX(t)−1 = (1− t)(1− pt)16(1+ pt)3(1− p2t)(1+ pt)(1− 1688538t+ p2t2).

The defining monomials of X generate a
sublattice of index 42 in Z3, and we can work
“in” that sublattice, by using

x4y−1z−1 + λx+ y+ z+ 1 = 0

which has a polytope much smaller than the
full simplex (32/3 ≈ 10.6 vs 2/3 ≈ 0.6).
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Example: a hypergeometric motive (also a K3 surface)

Consider the appropriate completion of the
toric surface over Fp with p = 215− 19 given by

x3y+ y4 + z4 − 12xyz+ 1 = 0.

In 4s, we compute that the “interesting”
factor of ζX(t) is (up to rescaling)

pQ(t/p) = p+ 20508t1 − 18468t2 − 26378t3 − 18468t4 + 20508t5 + pt6.

In P3 this surface is degenerate, and would have taken us 27m12s to
do the same computation with a dense model.

We can confirm the linear term with Magma:
C2F2 := HypergeometricData([6,12], [1,1,1,2,3]);
EulerFactor(C2F2, 2^10 * 3^6, 2^15-19: Degree:=1);
1 + 20508*$.1 + O($.1^2)
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Example: a K3 surface in a non weighted projective space

Consider the surface X defined as the closure (in P∆) of the affine
surface defined by the Laurent polynomial

3x+ y+ z+ x−2y2z+ x3y−6z−2 + 3x−2y−1z−2

− 2− x−1y− y−1z−1 − x2y−4z−1 − xy−3z−1.

The Hodge numbers of PH2(X) are (1, 14, 1). For p = 215 − 19, in 6m20s
we obtain the “interesting” factor of ζX(t):

pQ(t/p) = (1− t) · (1+ t) · (p+ 33305t1 + 1564t2 − 14296t3 − 11865t4

+ 5107t5 + 27955t6 + 25963t7 + 27955t8 + 5107t9

− 11865t10 − 14296t11 + 1564t12 + 33305t13 + pt14).

We know of no previous algorithm that can compute ζX(t) for p in
this range!
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Example: random dense K3 surface

X ⊂ P3Fp given by
− 9x4 − 10x3y− 9x2y2 + 2xy3 − 7y4 + 6x3z+ 9x2yz− 2xy2z+ 3y3z
+ 8x2z2 + 6y2z2 + 2xz3 + 7yz3 + 9z4 + 8x3w+ x2yw− 8xy2w− 7y3w
+ 9x2zw− 9xyzw+ 3y2zw− xz2w− 3yz2w+ z3w− x2w2 − 4xyw2

− 3xzw2 + 8yzw2 − 6z2w2 + 4xw3 + 3yw3 + 4zw3 − 5w4 = 0

For p = 215 − 19, in 38m27s, we obtain

ζX(t) = ((1− t)(1− pt)(1− p2t)Q(t))−1

where

pQ(t/p) = (t+ 1)
(
p− 53159t1 + 10023t2 − 3204t3 + 49736t4 − 56338t5

+ 43086t6 − 48180t7 + 44512t8 − 42681t9 + 47794t10

− 42681t11 + 44512t12 − 48180t13 + 43086t14 − 56338t15

+ 49736t16 − 3204t17 + 10023t18 − 53159t19 + pt20
)

Old implementation takes roughly the same time.
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Example: a quintic threefold in the Dwork pencil

Consider the threefold X in P4Fp for p = 220 − 3 given by

x50 + · · ·+ x54 + x0x1x2x3x5 = 0.

In 11m18s, we compute that

ζX(t) =
R1(pt)20R2(pt)30S(t)

(1− t)(1− pt)(1− p2t)(1− p3t)

where the “interesting” factor is

S(t) = 1+ 74132440T+ 748796652370pT2 + 74132440p3T3 + p6T4.

and R1 and R2 are the numerators of the zeta functions of certain
curves (given by a formula of Candelas–de la Ossa–Rodriguez
Villegas).

Using the old projective code, we extrapolate it would have taken us
at least 120 days.
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Example: a Calabi–Yau 3fold in a non weighted projective space

Let X be the closure (in P∆) of the affine threefold

xyz2w3 + x+ y+ z− 1+ y−1z−1 + x−2y−1z−2w−3 = 0.

For p = 220 − 3, in 1h15m, we computed the “interesting” factor of
ζX(t)

(1+718pt+p3t2)(1+1188466826t+1915150034310pt2+1188466826p3t3+p6t4).

By analogy with the Reid’s list, Calabi–Yau threefolds can arise as
hypersurfaces in:

• 7555 weighted projective spaces;
• 473,800,776 toric varieties.

See http://hep.itp.tuwien.ac.at/~kreuzer/CY/.
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Example: a dense Cubic fourfold

x20x1 + x0x21 + x21x2 + x0x22 + 4x20x3 + x21x3
+ 8x0x2x3 + 2x1x2x3 + 2x22x3 + 4x0x23 + x1x23 + x33 + 8x0x1x4

+ x21x4 + 4x1x2x4 + x22x4 + 8x0x3x4 + 2x2x3x4 + 8x0x24
+ x1x24 + 2x3x24 + x34 + 2x20x5 + x21x5 + x1x2x5 + x22x5

+ 8x0x3x5 + x1x3x5 + x23x5 + 4x0x4x5 + 3x3x4x5 + 2x0x25 + x4x25.

For p = 23, in 22h52m, we computed ζX(t) using a a fully dense
nondegenerate model, obtained by random change of variables in
P5. And we concluded that ρ(X) = 3 (one extra class over Fp and
another one over Fp2 ).

For p = 113 the running time was 26h34m and for p = 499 it was
33h47m.
Most of the time is spent setting up and solving the initial linear
algebra problems.
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Other possible versions

• Space-time tradeoff
We can reduce the time dependence on p to

p0.5+o(1) vol(∆)O(n)

• Average polynomial time
Given an hypersurface defined over Q, we may compute the zeta
functions of its reductions modulo various primes at once. The
average time complexity for each prime p < N is

log(N)4+o(1) vol(∆)O(n)

These have not yet been implemented and we still need to write
the paper...
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